Physics 798C Superconductivity Spring 2024 Homework 4 Due Thursday 29 February, 2024

1. Collapsing products of non-commuting operators

When checking the normalization of the BCS ground state wavefunction:

$$\left|\Psi_{G,BCS}\right\rangle = \prod_{k=k_1}^{k=k_M} \left(u_k + v_k c^+_{\vec{k}\uparrow} c^+_{-\vec{k}\downarrow}\right) 0 \rangle$$
, where

the product is over all momentum

states from k_1 to k_2 , one has to consider a double product over all momentum states when $\left\langle \Psi_{G,BCS} \left| \Psi_{G,BCS} \right\rangle \right.$

. Show that this double product can be safely collapsed constructing into a single product by carefully considering the anti-commuting properties of the Fermionic operators. We are interested in demonstrating this collapse in general, and use the normalization calculation simply to illustrate the point.

2. BCS Variational Calculation

Starting from the BCS pairing Hamiltonian in terms of the uk and vk, work through the variational calculation and derive the final results for u_k , v_k , and the zero temperature gap Δ .

In other words, start from this equation:

$$\langle \Psi_G | \mathcal{H} - \mu N_{op} | \Psi_G \rangle = 2 \sum_k \xi_k |v_k|^2 + \sum_{kl} V_{kl} u_k v_k^* u_l^* v_l$$

... and arrive at these equations: $u_k^2 = \frac{1}{2} \left[1 + \frac{\epsilon_k - \mu}{\sqrt{\Delta^2 + (\epsilon_k - \mu)^2}} \right] \text{ and } v_k^2 = \frac{1}{2} \left[1 - \frac{\epsilon_k - \mu}{\sqrt{\Delta^2 + (\epsilon_k - \mu)^2}} \right]$